
Language Oriented Programming:
The Next Programming Paradigm

1Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

Part I. LANGUAGE ORIENTED
PROGRAMMING OVERVIEW

Language Oriented Programming and
the Meta Programming System
Ideally, being a programmer means I can do anything
on a computer. I have complete freedom, complete
control. But in reality, programmers today have very

It is time to begin the next technology revolution in software development,
and the shape of this revolution is becoming more and more clear. The next
programming paradigm is nearly upon us. It is not yet fully formed—different
parts have different names: Intentional programming, MDA, generative
programming, etc. I suggest uniting all of these new approaches under one
name, ‘language-oriented programming’, and this article explains the main
principles of this new programming paradigm.

Today’s mainstream approach to programming has some crucial built-in
assumptions which hold us back like chains around our necks, though most
programmers don’t realize this. With all the progress made so far in
programming, we are still in the Stone Age. We’ve got our trusty stone axe
(object-oriented programming), which serves us well, but tends to chip and
crack when used against the hardest problems. To advance beyond stone,
we must tame fire. Only then can we forge new tools and spark a new age
of invention and an explosion of new technologies.

I’m talking about the limitations of programming which force the programmer
to think like the computer rather than having the computer think more like the
programmer. These are serious, deeply-ingrained limitations which will take
a lot of effort to overcome. I’m not being pretentious when I say that this will
be the next big paradigm shift in programming. We will need to completely
redefine the way we write programs.

In this article, I present my view and my current work toward Language
Oriented Programming (LOP). First I will show what is wrong with mainstream
programming today, then I’ll explain the concept of LOP by using the example
of my existing implementation, the Meta Programming System (MPS). This
article is intended to give you a bird’s-eye-view of LOP, to spark interest in
the idea, and hopefully to generate feedback and discussion.

restricted freedom. Sure, I can do anything on a computer,
but some things take me years of effort when it should
take much less time. Something is wrong here.	

Programmers are restricted because they are heavily
dependent on programming infrastructure which they
cannot easily change, namely the languages and
environments that they use. If I want some extension to
a language, I must wait for the language designer to

Sergey Dmitriev, JetBrains

november 2004 www.onboard.jetbrains.com

2Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

update it. If I want some extra power from my IDE, I must
wait for the IDE vendor to add the new features. It is this
dependence which limits my complete freedom. Sure, I
can write my own compiler or IDE. In fact, this is why I
started work on IntelliJ IDEA, because I was tired of being
dependent on the existing weak Java IDEs. But this takes
a lot of time and effort and is simply not practical for
most programmers. There is a big difference between
theoretical freedom and practical freedom. When I talk
about freedom here, I mean practical freedom.	

The way to gain freedom is to reduce our level of
dependency. For example, one of the main goals of Java
is to reduce dependency on the operating system, giving
developers the freedom to deploy on different operating
systems. So, to gain freedom over languages and
environments, we should reduce our dependency on them.

Why is this a problem? Any general-purpose language,
like Java or C++, gives us the ability to do anything we
want with a computer. This is true, at least in theory
anyway, but general-purpose languages tend to be
unproductive as I will explore later. Alternatively, we could
use domain-specific languages (DSLs, aka ‘little
languages’), which are tailored to be highly productive
in a specific problem domain, such as SQL for writing
database queries. The strength of DSLs, domain
specificity, is also their weakness, since any real-world
program will involve many different domains.

It’s not a question of general-purpose versus domain-
specific. I want all freedoms. I want to be able to do
anything, and also be highly productive at the same time.
There aren’t any good ways to do this yet. Ideally, I would
be able to use different languages for each specialized
part of the program, all working together coherently. And
the environment would fully support these languages
with refactoring, code completion, navigation, and all the
other productivity tools that are available for mainstream
languages.

To achieve this independence, I need the freedom to
create, reuse, and modify languages and environments.
For this freedom to be practical, it needs to be easy to
achieve. If we solve this problem of easily developing
languages and environments, it will be a giant leap
forward for programmers. This is where Language
Oriented Programming comes in.

To understand what Language Oriented Programming
is, let’s first take a look at today’s mainstream programm-
ing. It goes something like this:

Think:
You have a task to program, so you form a conceptual
model in your head about how to solve the problem.

Choose:
You choose some general-purpose language (such as
Java or C++) for writing the solution.

Program:
You write the solution by performing a difficult mapping
of your conceptual model into the programming language.

The Program step is the bottleneck because the mapping
is not easy or natural in most cases (see Figure 1). This
method has proved ineffective for programmers to express
complex programs. In contrast, here is how LOP would work:

Think:
You have a task to program, so you form a conceptual
model in your head about how to solve the problem.

Choose:
You choose some specialized DSLs for writing the solution.

Create:
If there are no appropriate DSLs for your problem, then
you create ones that fit your problem.

Program:
You write the solution by performing a relatively straight-
forward mapping of your conceptual model into the DSLs.
Now, the Program step is much less of a bottleneck
because the DSLs make it much easier to translate the
problem into something the computer can understand
(See Figure 2). It may appear that the difficulty has simply
shifted to the Create step. However, a combination of
tool support and applying LOP to itself will make this
step much easier.

The motivation behind LOP goes something like this: I want
to be able to work in terms of the concepts and notions
of the problem I am trying to solve, instead of being forced
to translate my ideas into the notions that a general-
purpose language is able to understand (e.g. classes,
methods, loops, conditionals, etc.). To achieve this, I need
to use domain-specific languages. How do I get them?
I create them.

I have begun development of a universal platform (the
Meta Programming System) for designing domain-
specific languages along with their supporting tools and
environments. It will allow programmers to define
languages as easily as they can write programs today.
The platform will fully support LOP, giving programmers
the freedom to use the most suitable language for each
part of their programs, rather than tying them down to

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

3Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

Task Solution Program
(source)

Program
(executable)

“Manual” work Automated

Write program code by mapping the
solution into programming

language

Form
conceptual
model of
solution

Compile
code

Figure 1: Mainstream programming with a general-purpose language.

one fixed general-purpose programming language.

MPS is just one example of Language Oriented
Programming. Although I will use MPS as an example,
LOP could be achieved in many different ways. You
might know of some alternatives yourself. The concept
of LOP is not the same as its implementation, just as
the concept of OOP is not the same as Java or C++ or
Smalltalk.

What Is Wrong with Mainstream
Programming
You know the old saying, "If it ain't broke, don't fix it".
Mainstream programming is definitely broken. I see
many problems with it, and most of them stem from the
fact that there is no way for a general-purpose language
to fully support arbitrary domains, and likewise there can
be no universal domain-specific language. Here are the
three worst problems with mainstream programming that
will be solved by LOP:

Time Delay to Implement Ideas

For me, the most serious problem is that there is a very
long gap between when I know exactly how to solve a
problem and when I have successfully communicated

www.onboard.jetbrains.com

Task Solution Program
(source)

Program
(executable)

“Manual” work Automated

Easy mapping
of solution into

specific
language

Form
conceptual
model of
solution

Generate and/or compile
code

Figure 2: Language-oriented programming with domain-specific languages.

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

this solution to the computer as a program. I can explain
the problem and solution to another programmer in a
matter of hours, but encoding this solution into the
computer takes much longer. This is because with a
programmer I can use natural language which is very
rich, but for the computer, I must use a general-purpose
programming language which is much less expressive.
Programming languages today have only tens of notions
that can be expressed. A natural language has tens of
thousands of notions which can be expressed succinctly.
So, to explain a program to another programmer, I can
just express very high-level ideas, but for the computer,
I must express every single step and every detail.

In mainstream programming, most of the time spent
‘programming’ is really just finding ways to express
natural language concepts in terms of programming level
abstractions, which is difficult, not very creative, and
more or less a waste of time.

For example, today a good deal of development time is
spent on object-oriented design (OOD). This is actually
a fairly creative process where the programmer expresses
classes, hierarchies, relationships, and such. The purpose
of this exercise is to express the program in object-
oriented terms such as classes and methods. The

4Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

process of OOD is necessary because these classes
and methods are the only abstractions that object-
oriented languages understand. It seems like it is
necessary and creative, but with Language Oriented
Programming, OOD is not needed at all.

Understanding and Maintaining Existing Code

The next problem I have is in understanding and
maintaining existing code. Whether it is written by another
programmer or by me, the problem is the same. Because
general-purpose languages require me to translate high-
level domain concepts into low-level programming
features, most of the big picture is lost in the resulting
program. When I come back to the program later, I have
to reverse engineer the program to understand what I
originally intended, and what the model in my head was.
Basically, I must mentally reconstruct the information
that was lost in the original translation to the general-
purpose programming language.

The traditional way to address this problem is to write
comments or other forms of documentation to capture
the design and model information. This has proven to be
quite a weak solution for a number of reasons, not the least
of which is the cost of writing such auxiliary documentation,
and the tendency of documentation to grow out-of-synch
with code. Additionally, and not as frequently recognized,
is the fact that documentation cannot be directly connected
to the concept it is documenting. Comments are tied to
the source code in a single location, but the concept
may be represented in the code in many places. Other
types of documentation are entirely separated from the
code and can only indirectly reference the code. Ideally,
the code should be self-documenting. I should read the
code itself to understand the code, not some comments
or external documentation.

Domain Learning Curve

The third major problem is with domain-specific extensions
to the language. For example, in OOP the primary
method of extending the language is with class libraries.
The problem is that libraries are not expressed in terms
of domain concepts, but in lower-level general-purpose
abstractions such as classes and methods. So, the
libraries rarely represent the domain directly. They must
introduce extra complications (such as the runtime
behavior of a class) to complete the mapping. Two good
and common examples are graphical user interface
libraries and database libraries.

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

Learning such libraries is not a simple task, even if you are
an expert in the domain. Since there is no direct mapping
from domain to language, you must learn this mapping.
This presents a steep learning curve. Usually we attempt
to solve this problem with extensive tutorials and
documentation, but learning this takes a lot of time. As a
library becomes more complex, it becomes much more
difficult to learn, and programmers lose motivation to learn it.

Even after learning such a complicated mapping, it
remains very easy to misuse the library because the
environment (such as compiler and editor) isn’t able to
help you use the library correctly. To these tools, a call
to a method on a GUI object is the same as a call to a
method on a DB object—they are both just method calls
on objects, nothing more. It is up to the user to remember
which classes and methods need to be invoked, and in
what order, and so on.

And even if you are an expert in the domain and also
an expert user of the library, there is still the problem of
the verbosity of programs written using the library.
Relatively simple domain concepts require complicated
gestures to invoke correctly. Anyone who has used
Swing, for example, is aware of this. It just takes too
long to write simple things, and complex things are even
worse.

Details of LOP

What Is a Program in LOP?

Today, ninety-nine percent of programmers think
programming means writing out a set of instructions for
the computer to follow. We were taught that computers
are modeled after the Turing machine, and so they ‘think’
in terms of sets of instructions. But this view of
programming is flawed. It confuses the means of
programming with the goal. I want to show you how LOP
is better than traditional programming, but first I must
make something clear: A program in LOP is not a set of
instructions. So what is a program then?

When I have a problem to solve, I think of the solution
in my head. This solution is represented in words, notions,
concepts, thoughts, or whatever you want to call them.
It is a model in my head of how to solve the problem. I
almost never think of it as a set of instructions, but instead
as a set of inter-related concepts that are specific to the
domain I’m working in. For example, if I’m thinking in the
GUI domain, I think ‘I want this button to go here, this
field to go here, and this combo-box should have a list

5Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

of some data in it.’ I might even picture it in my head,
without any words at all.

I say that this mental model is a solution because I can
explain this model to another programmer in enough
detail that the programmer could sit down and write a
program (e.g. in Java) which will solve the problem. I
don’t need to explain the solution in terms of a
programming language—it could be in almost any form.
To explain how to lay out a GUI form, I could just draw
the form, for example. If this drawing has enough detail,
then the drawing itself represents the solution. Such
domain-specific representations should be the program.
In other words, there should be a method that allows me
to use this representation as an actual program, not just
as a way of communicating with other programmers. So
this leads to my informal definition of a program: A
program is any unambiguous solution to a problem. Or,
more exactly: A program is any precisely defined model
of a solution to some problem in some domain, expressed
using domain concepts.

This is the main reason I think programmers should have
the freedom to create their own languages—so they can
express solutions in more natural forms. General-purpose
languages are unambiguous, but too verbose and error-
prone. Natural language (e.g. English) is very rich, but
currently it is too difficult because it is very informal and
ambiguous. We need to be able to easily create formal,
precisely defined, domain-specific languages. So
Language Oriented Programming will not just be writing
programs, but also creating the languages in which to
write our programs. Our programs will be written closer
to the problem domain instead of in the computer’s set-of-
instructions domain, and so they will be much easier to
write.

Programs and Text

Everyone is used to the idea that a program is stored
as text, i.e. a stream of characters. And why shouldn't
it be? After all, there are countless tools for editing,
displaying, and manipulating text. Central parts of
programming languages today are their grammars,
parsers, compilers, and line-oriented debuggers. But a
program’s text is just one representation of the program.
Programs are not text. Forcing programs into text form
causes lots of problems that you might not even be
aware of. We need a different way to store and work
with our programs.

When a compiler compiles source code, it parses the

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

text into a tree-like graph structure called an abstract
syntax tree. Programmers do essentially the same
operation mentally when they read source code. We still
have to think about the tree-like structure of the program.
That’s why we have brackets and braces and
parentheses. It’s also why we need to format and indent
code and follow coding conventions, so that it is easier
to read the source.

Why do we resort to text storage? Because currently,
the most convenient and universal way to read and edit
programs is with a text editor. But we pay a price because
text representations of programs have big drawbacks,
the most important of which is that text-based
programming languages are very difficult to extend. If
programs are stored as text, you need an unambiguous
grammar to parse the program. As features are added
to the language, it becomes increasingly difficult to add
new extensions without making the language ambiguous.
We would need to invent more types of brackets,
operators, keywords, rules of ordering, nesting, etc.
Language designers spend enormous amounts of time
thinking about text syntax and trying to find new ways
to extend it.

If we are going to make creating languages easy, we
need to separate the representation and storage of the
program from the program itself. We should store pro-
grams directly as a structured graph, since this allows us to
make any extensions we like to the language. Sometimes,
we wouldn’t even need to consider text storage at all.
A good example of this today is an Excel spreadsheet.
Ninety-nine percent of people don’t need to deal with
the stored format at all, and there are always import and
export features when the issue comes up. The only real
reason we use text today is because we don’t have any
better editors than text editors. But we can change this.

The problem is that text editors are stupid and don’t
know how to work with the underlying graph structure
of programs. But with the right tools, the editor could
work directly with the graph structure, and give us
freedom to use any visual representation we like in the
editor. We could render the program as text, tables,
diagrams, trees, or anything else. We could even use
different representations for different purposes, e.g. a
graphical representation for viewing, and a textual
representation for editing. We could use domain specific
representations for different parts of the code, e.g.
graphical math symbols for math formulas, graphic
charts for charts, rows and columns for spreadsheets,

6Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

etc. We could use the most appropriate representation
for the problem domain, which might be text, but is not
limited to text. The best representation depends on how
we think about the problem domain. This flexibility of
representation would also enable us to make our editors
more powerful than ever, since different representations
could have specialized ways to edit them.

What Is a Language in LOP?

Lastly, I should clarify what I mean by ‘language’. In
LOP, a language is defined by three main things:
Structure, editor, and semantics. Its structure defines its
abstract syntax, what concepts are supported and how
they can be arranged. Its editor defines its concrete
syntax, how it should be rendered and edited. Its
semantics define its behavior, how it should be interpreted
and/or how it should be transformed into executable
code. Of course, languages can also have other aspects,
such as constraints and type systems.

Part II. INTRODUCTION TO META
PROGRAMMING SYSTEM

Creating Languages in MPS
I have explained why we need to easily create new
languages. But how can we make it easy? If you turn
the question around and apply Language Oriented
Programming to itself, you will soon see the answer. This
calls for a little self-referential bootstrapping, which can
seem tricky, but be patient. Once you understand this,
you will 'get' the real power of LOP.

Recall that the idea of LOP is to make it easy to create
special domain-specific languages, and those DSLs will
make writing our programs easier. But as I've shown,
'programs' in LOP are not restricted to mean the typical
'set-of-instructions' programs you are used to. Any
unambiguous solution to some problem in some domain
is a 'program'. So if you imagine the domain of 'creating
new languages', then a 'program' in that domain would
actually be a definition of a new language itself, which
can be thought of as a solution just like any other solution.

So, applying the idea of LOP, the way to make ‘creating
new languages’ easy is to create special DSLs dedicated
to the domain of ‘creating new languages’. By using
these language-building DSLs, we can make it easy to
make new languages. Let’s look at some of these
language-building languages to give you a better idea

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

of how this works. This is an overview; future articles will
describe these languages in more detail.

Structure Language

At the bare minimum, we need to define the ‘structure’
of a new language. This is how we will be able to write
‘precisely defined’ programs. The structure of a language
doesn’t mean its textual grammar—as I mentioned, there
may not even be a textual representation of the program,
but only a graph representation.

In most cases, while practicing LOP, you work with two
‘levels’ of programming, the meta level and the program
level. You define the language in the meta level, and
write the program in the program level. When defining
the structure of a new language, you would use a
language-structure DSL to define your new language,
which would reside in the program level.

In MPS, each node in the program level has a ‘type’
which is just a link to another node in the meta level.
The node in the program level is said to be an ‘instance’
of the type. The meta level ‘type’ node defines what
relationships its instances can have and also what
properties they will have. The language for describing
this meta level language structure is called simply the
Structure Language.

To define a language’s abstract syntax with the Structure
Language, you should just enumerate all the types in
the language. The types simply represent the features,
or concepts, that the language supports. Each concept
should be defined by its name, the internal properties
of its instances, and the relationships (basically links) its
instances can have with other nodes (see Figure 3).

There are two kinds of relationships possible. The first
kind is an aggregation-like relationship which forms the
parent-child tree structure of concept models. The second
kind is a non-aggregating, freeform relationship which
can link any node to any other node in the system.
Relationships have two ends, the source end and the
target end. Relationships have roles, and for every role
you define the name of the role, the cardinalities of each
end, and the type of the target nodes. Cardinalities can
be 1, 0..1, 0..n, or 1..n, which lets you restrict how many
links can be created for this relationship. The relationship
target type can be used to restrict what types of nodes
can be linked together.

So, using the new language to write a program would
involve creating instances of the concepts in the language,

7

www.onboard.jetbrains.com

assigning values to the properties of the instances, and
linking the nodes in the program together according to
the relationships defined by the language concepts. All
of this will be supported by powerful editors which you
can define for your language.

Editor Language

So, what is the interface for writing and manipulating
concept models? We need some sort of editor for our
languages. But we don’t want a generic editor; experience
has shown that generic editors aren’t as usable as we
want them to be. We want writing models to be fast, so
we want specialized editors tailored to our language
concepts. In a way, the editor is part of the language,
and our goal is to create new languages easily, so
creating new editors should also be easy. Essentially,
we need a language for creating editors. In MPS, it is
called the Editor Language.

When people hear me say that our programs will be
stored as graphs and we will have special editors, I’m
sure many will think that I’m talking about diagram editors.
This is not the case. Even though the programs are
graphs, the editors don’t have to render as diagrams. In
fact, diagram editing is usable in only a small percentage

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

Figure 3: Definition of the "Method" concept in the Structure Language

of cases (i.e. when it is appropriate, such as with database
tables). In contrast, there is a much better source of
inspiration for our Editor Language, and that ironically
happens to be text editors.

If you look at a typical program in a text editor, you can
imagine that the editor is divided into rectangular cells.
Some cells would contain required symbols like keywords,
braces, and parentheses, and other cells would contain
user-defined symbols like class and method names.
Larger cells would be composed of smaller cells, like a
method block containing statements, which might also
have their own nested blocks. In fact, any well-formed
program in any mainstream programming language could
be composed into a set of rectangular cells. Well, in the
Editor Language, you don’t have to imagine these cells,
because the editors simply are composed of rectangular
cells (see Figure 4).

The usage of cells has some interesting advantages.
First, the cells can perfectly mimic, and even out-do,
standard text editors while working directly on the pro-
gram graph instead of text. Second, cells are not limited
to text; you could have anything like color choosers,
math symbols, charts, vector graphics, or anything else
in a cell. In the end, even this cell layout is optional and

8Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

the programmer could provide a different mechanism.
The cell layout is just a useful default.

So the Editor Language helps you define the layout of
cells for each concept in the language. You can define
which parts are constant, like braces or other decorations,
and which parts are variable and need the user to define
them. The Editor Language also helps you add powerful
features to your own editors, like auto-complete,
refactoring, browsing, syntax highlighting, error
highlighting, and anything else you can think of. So you
can add the power of today’s editors, like IntelliJ IDEA,
to your own custom languages. This is possible because
programs and languages are structured as graphs, and
because we have a specialized Editor Language that
helps us create powerful editors.

Transformation Language

The Structure Language and Editor Language together
already provide some power. You could use them to
communicate ideas to other people, for example to draw
UML diagrams or to write other types of static documents.
However, most of the time we want our code to do
something, so we have to find a way to make it executable.
There are two main ways to do this: Interpretation and
compilation.

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

Figure 4: Definition of an editor for the "Method" concept

Interpretation is supported by DSLs to help define how
the computer should interpret the program. Compilation
is supported by DSLs to help define how to generate
executable code from our program. I will discuss support
for interpretation in future articles. Right now I want to
show how MPS supports compilation.

Compilation means to take source code and generate
some form of executable code from it. There are many
possibilities for the format of the resulting code. To
generate executable code, you could generate natively
executable machine code or bytecode that runs in a
virtual machine. Alternatively, you could generate source
code in a different language (e.g. Java or C++), and later
use an existing compiler to turn that into executable code.
Along the same lines, you could even generate source
code in some interpreted language, and use the existing
interpreter to execute the code.

To avoid dealing with such a wide variety of target formats,
our approach is to do everything in MPS. First, you define
a target language in MPS using the Structure Language.
This target language should have a direct, one-to-one
mapping to the target format. For example, if your target
format were machine code, you would define a target
language in MPS that represented machine code; if the
target format were Java source code, you would define

9Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

a Java-like target language. The target language doesn’t
have to support all the features of the target format, just
as long as there is a simple, one-to-one mapping for all
of the language features that you need.

So now there are two phases to compilation, a simple
translation from the target language to the final result,
and a more complex transformation from the initial source
language to the intermediate target language. The
translation phase is trivial, so we can focus on the more
interesting transformation phase. Essentially, the problem
is now simplified into how to transform models from one
language to another. But the source language and target
language could be radically different, making
transformations very complex, for example by mapping
one source node to many target nodes scattered
throughout the target model. We want to make it as easy
as possible to define transformations, so we need a
model-transformation DSL to help us. In MPS, this DSL
is called the Transformation Language.

There are three main approaches to code generation,
which we would like to use together to define model
transformations. The first is an iterative approach, where
you enumerate all the nodes in the source model, inspect
each one, and based on that information generate some
resulting target nodes in the target model. The second
approach is to use templates and macros to define how
to generate code in the target language. The third
approach is to use search patterns to find where in the
source model to apply transformations.

We combine these approaches by defining DSLs to
support each approach. The DSLs will all work together
to help you define transformations from one language to
another. For example, the iterative approach inspired
the Model Query Language, which makes it easy to
enumerate nodes and gather information from a concept
model. You can imagine this as something like SQL for
concept models. As a bonus, having a powerful query
language is useful for more than just code generation
(e.g. making editors smarter).

Templates

The template approach works something like Velocity or
XSLT. Templates look like the target language, but allow
you to add macros in any part of the template. Macros
are essentially bits of code that are executed when you
run the transformation. The macros allow you to inspect
the source model (using the Model Query Language),
and use that information to ‘fill in the blanks’ in the
template to generate the final target code.	

In Figure 5, you can see the definition of a template for
generating Java code for a "Property" concept. The
template adds field declarations, getters, and setters for
the property. This template is part of the generator that
translates code from the Structure Language into Java.

Since the templates look like the target language, you
can imagine that templates are written in a special
language that is based on the target language. This is

Figure 5: Template for generating Java code for the "Property" concept

10Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

in fact how it works. Instead of manually creating a new
template language for each possible target language,
we actually have a generator which generates the template
language for you. It basically copies the target language
and adds in all the special template features like macros
and such. Even the template editors are generated from
the target language’s editors, so you don’t have to hand
code them either.

When you use a template language, you can think of it
as writing code in the target language where some parts
of the code are ‘parameterized’ or ‘calculated’ with
macros. This technique helps simplify code generation
enormously. Templates can also be used for other tasks
like refactoring, code optimizers, and more.	

Patterns

The model pattern-matching approach gives us a powerful
way to search models, as an alternative to the Model
Query Language. You can imagine patterns as regular
expressions for concept models. Similar to the template
approach, we will generate a pattern language based on
the source language. The pattern language looks like
the source language, but adds features which help you
to define flexible criteria for performing complex matching
on the source model. You can imagine this approach as
a powerful search-and-replace technique. Again, the
pattern languages are useful for more than just code
generation. For example, they would be very useful for
writing automatic code inspections for the source
language’s editors.

Remember that the Model Query Language, template
languages, and pattern languages are all supported by
powerful editors with auto-complete, refactoring, reference
checking, error checking, and so on. Even complex
queries, macros, and patterns will be easy to write. Code
generation has never seen this level of power.

Using Languages Together
The previous section on code generation raises some
interesting issues about how languages can work together.
There are in fact several ways to achieve it. In MPS, all
the concept models know about each other. Since
languages are concept models too, this means that all
the languages know about each other, and can potentially
be interlinked.

Languages can have different relationships to each other.
You could create a new language by extending an existing

one, inheriting all of its concepts, modifying some of
them, and adding your own. One language could reference
concepts from another language. You could even ‘plug’
one language into another. I will discuss this in more
detail in future articles.

Platforms, Frameworks, Libraries, and
Languages
Our system for supporting Language Oriented
Programming needs more than just meta-programming
capabilities to make it useful. It should also support all
the things that programmers have come to rely upon
from today’s programming languages: Collections, user-
interface, networking, database connectivity, etc.
Programmers don’t choose languages solely based on
the language itself. For instance, much of the power of
Java comes not only from the language, but from the
hundreds and hundreds of frameworks and APIs available
for Java programmers to choose from. It’s not the Java
language they are buying into, but the entire Java platform.
MPS will also have a supporting platform of its own.	

Before I get into the specifics, let’s talk briefly about frame-
works. What is a framework? In mainstream programming,
it usually means a set of classes and methods packaged
up into a class library. Let’s look a little closer at this and
see what we can see through the lens of LOP.

Why do we want to package up classes and methods
into libraries? Most programmers would recite what their
professors once told them and say, “Reuse.” But that
just leaves another question in its place. Why do we
want to reuse some set of classes? The answer is
because the set of classes is useful for solving certain
types of problems, like making GUIs, or accessing
databases, or whatever. You might say that a class
library corresponds to some domain. Lo and behold, we
see the connection. Class libraries are wannabe DSLs!
This sad fact really frustrates me.

Domain-specific languages exist today in the form of
class libraries, except they aren’t languages, have none
of the advantages of languages, and have all the
limitations of classes and methods. Specifically, classes
and methods are immediately tied to a specific runtime
behavior which can’t be modified or extended, because
that behavior is defined by the concepts of ‘class’ and
‘method’. Because they are not languages, class libraries
are rarely supported intelligently by the environment
(compiler and editor, for example).

11Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

Should we be stuck with wannabe DSLs, or should we
have the freedom to use a real DSL when a DSL is
called for? Freedom, of course. Any class library is a
good candidate for creating a full-fledged DSL for our
platform. For example, all the libraries in the JDK should
be DSLs for the MPS platform. Some of these DSLs are
not so critical at the outset, but others will have a big
impact on the power and reusability of the platform right
from the beginning. I want to talk briefly about the three
most important platform languages that will be provided
with MPS: The Base Language, the Collection Language,
and the User Interface Language.

Base Language

The first thing we need is a language for the simplest
programming domain, which is general-purpose
imperative programming. This simple language would
support such nearly-universal language features as
arithmetic, conditionals, loops, functions, variables, and
so on. In MPS we have such a language, which is called
the Base Language.

The need for such a language should be clear. For
example, if we want to add two numbers together, we
should be able to say ‘a + b’ as simple as that. We won’t
need to use it everywhere, but it will be needed in some
part of nearly all programs, wherever it is the most
appropriate tool for the job.

The Base Language is so named because it is a good
foundation for many languages that need basic
programming support like variables, statements, loops,
etc. It can be used in three ways. You can extend it to
create your own language based on it, you can reference
its concepts in your programs, and you can generate

your code to the Base Language. There will be various
generators available to transform the Base Language
into other languages like Java, C++, etc. Not every
language needs to use the Base Language, of course,
but it’s a good starting point in many cases.	

Collection Language

The next most important language we need is a language
for working with collections. The need for collection
support is ubiquitous. Every major mainstream language
has some sort of support for collections. For example,
in Java you have java.util, in C++ you have STL.
Everybody needs collections. If different DSLs had their
own collection support, there would be a Babylon of
different collection languages, each incompatible with
each other. This is why MPS must provide a single
Collection Language which everyone uses.	

In many mainstream languages, collections are not
language features but class libraries. A good example
is Java’s java.util package. The support is technically
there, but it is so inconvenient, messy, and error prone.

Yuck! Most Java code today is littered with lines and
lines of redundant, repetitive code for handling collections.
Figure 6 shows an example of how a Collection Language
beats the tar out of a class library. The example is an
algorithm for finding the convex hull of a given set of
points. More details about the Collection Language will
be forthcoming in future articles.

User Interface Language

The User Interface Language is the next most important
DSL for our platform. Interestingly, the Editor Language

Figure 6: Convex hull algorithm using the Collection Language

12Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

I mentioned previously could conceivably be used for
providing user interfaces, but a full-fledged language for
graphical user interfaces would be more flexible. The
benefits of such a language would be enormous. Java
Swing code is a perfect example of a class library
wanting to be a DSL. The features are there, but are
easy to misuse [3], and Swing code is a complete mess.
Many environments today include GUI builders to simplify
user-interface creation. The User Interface Language
will take that mission to a higher plane. I will discuss this
language in more detail in future articles.

Getting Started with MPS
I can already hear some of the skeptical responses to
LOP: “Sounds great, but our project is already underway
and switching to LOP at this point isn’t practical,” or
“Sounds great, but it’s too risky to start a real-life project
with an untested method like LOP,” or “Sounds great,
but when will it be ready for prime time? OOP took 20
years to become mainstream.”

The good news is that you won’t have to dive head-first
into the unknown; you can dip your toe in and see if the
water is nice first. You can try just a little bit of LOP on
your project to see if it provides a practical advantage,
and then try a bit more if you like it. Here are two possible
applications of LOP which you will be able to try in the
near future with MPS.

Using MPS on Java Applications

There is already a prototype plugin for IntelliJ IDEA
which will allow you to include MPS concept models in
your project. The models will automatically be translated
into Java source code in the background as you edit
them. So, you will be able to write part of your Java
applications using MPS, as much or as little as you want.
This means that you get all the power of MPS, such as
the ability to create and use specialized DSLs, to make
whatever language extensions you want, as well as to
use customizable editors with code completion, error
highlighting, refactoring, etc. The plugin will be tightly
integrated with IDEA, allowing you to embed Java code
in your MPS models, navigate to embedded or generated
Java code, and even perform concept-level debugging
similar to the JSP debugging support already available
in IDEA. More integration features are planned, as well.
This will be an important new tool available to Java
developers using IDEA.

Configuring and Scripting Your Applications

There’s a pattern I’ve seen many times. An application
starts off needing some form of configuration, be it a
simple options file, or a more complete deployment
descriptor file. Eventually, configurations become more
complex, and the application ends up needing a scripting
language. For simple configuration files, XML is popular.
For scripting languages, you can create your own, or
borrow a general-purpose one like VBScript,
Python/Jython, Tcl, Javascript, or maybe Lisp. Each of
these solutions has at least some of the standard
drawbacks of mainstream programming: Long time to
implement, steep learning curve, hard to extend, poor
environment support, etc.

Alternatively, you could create your own configuration/
scripting language with MPS. Users of your application
would then have an easy-to-use, intelligent editor for
writing their scripts, including syntax highlighting, error
highlighting, code completion, navigation, etc. It will take
a fraction of the time to create and integrate the language
into your application. You will be able to redistribute the
MPS runtime for use with this kind of application.

Conclusion
The ideas underlying LOP and MPS are not new, and
have actually been around for more than 20 years [1].
The term Language Oriented Programming itself has
been around for at least 10 years [2]. What is new is
that these ideas have silently saturated the software
development community, and their time has finally come.
With this article, I hope to provide a seed around which
these ideas can crystallize into new discussions, opinions,
critiques, experiments, research, and real-life projects.

And so, I invite you to take part in this new paradigm in
whatever way you can. Add a comment below, or send
me an email at mps_article@jetbrains.com. Find out
more about MPS at http://www.jetbrains.com/mps and
watch for updates. Take a fresh look at websites,
magazines, blogs, and books from the perspective of
LOP, and think about how much easier things could be.
Think about your own projects and how often what you’re
doing is actually designing and using little specialized
languages cobbled together with classes and methods.
What do you think about that? I want to know.

I have already seen first-hand how Language Oriented
Programming can drastically improve software
development, as I have been using the concept of LOP

13Copyright © 2004 JetBrains s.r.o. All rights reserved.
For permission to copy or redistribute this article please contact: editors@jetbrains.com

www.onboard.jetbrains.com

Language Oriented Programming: The Next Programming Paradigm
Sergey Dmitriev, JetBrains

to develop MPS itself. MPS is currently not ready for the
real world, but it is getting there. There is also no
documentation yet, except for this article. I will publish
more articles soon, which will explore MPS in more
depth. Also, I plan to make MPS available to download
and try out in the coming months, so keep your ears
open.

There are other projects out there that follow similar
approaches, notably from Intentional Software [4], and
Xactium [5].

So have fun exploring, and let me know what you find.

Acknowledgements
I would like to thank Rob Harwood for his help in editing
this article. I would also like to thank the following people
for their reviews, comments, and suggestions: Igor
Alshannikov, Florian Hehlen, Jack Herrington, Guillaume
Laforge, Vaclav Pech, Thomas Singer, Dmitry Skavish,
David Stennett, and Timur Zambalayev.

About the Author
Sergey Dmitriev (http://www.sergeydmitriev.com) is the
co-founder and CEO of JetBrains Inc.
(http://www.jetbrains.com), makers of the IntelliJ IDEA
Java IDE.

References

Articles:
[1] Donald E. Knuth. Literate programming. The Computer
Journal, 27, 97-111, May 1984.

[2] M. Ward. Language Oriented Programming.	
Software - Concepts and Tools, 15, 147-161 1994,	
 http://www.dur.ac.uk/martin.ward/martin/papers/middle-out-t.pdf

Intentional Programming articles:

Charles Simonyi. The Death of Computer Languages,	
The Birth of Intentional Programming. 1995.	
ftp://ftp.research.microsoft.com/pub/tr/tr-95-52.doc also	
ftp://ftp.research.microsoft.com/pub/tr/tr-95-52.ps	

John Brockman. Intentional Programming:	
A Talk With Charles Simonyi. Edge. 2000.	
http://www.edge.org/digerati/simonyi/simonyi_p1.html	

Microsoft Research. Intentional Programming.	
http://www.cse.unsw.edu.au/~cs3141/ip.asf (video)	

Charles Simonyi. Intentional Programming:	
Asymptotic Fun?	
http://www.hpcc.gov/iwg/sdp/vanderbilt/position_papers/simonyi.pdf

Books:
Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative
Programming: Methods, Tools and Applications. Addison-
Wesley, 2000. ISBN: 0201309777.

Jack Herrington. Code Generation in Action. Manning,	
2003. ISBN: 1930110979.	 http://www.codegeneration.net/cgia/

Xactium. Applied Metamodelling: A Foundation for	
Language Driven Development. 2004.	
http://albini.xactium.com/content/index.php?option=com_remosit
ory&Itemid=28

Other Resources on the Web:
[3] Matt Quail. Totally Gridbag.	
http://madbean.com/blog/2004/17/

Jack Herrington. Code Generation Network.	
http://www.codegeneration.net/

[4] Intentional Software
http://www.intentsoft.com

[5] Xactium
http://www.xactium.com

Intentional Programming interviews

Sergey Dmitriev.
http://codegeneration.net/tiki-read_article.php?articleId=60	

Charles Symonyi.
http://codegeneration.net/tiki-read_article.php?articleId=61	

Krzystof Czarnecki.
http://codegeneration.net/tiki-read_article.php?articleId=64	

Andy Evans.
http://codegeneration.net/tiki-read_article.php?articleId=68

